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Key methodological issues for designing, analyzing, and interpreting neuroimaging experiments are pre-
sented from the perspective of the framework of Coordination Dynamics. To this end, a brief overview of
Coordination Dynamics is introduced, including the main concepts of control parameters and collective
variables, theoretical modeling, novel experimental paradigms, and cardinal empirical findings. Basic
conceptual and methodological issues for the design and implementation of coordination experiments
in the context of neuroimaging are discussed. The paper concludes with a presentation of neuroimaging
findings central to understanding the neural basis of coordination and addresses their relevance for the
sport sciences. The latter include but are not restricted to learning and practice-related issues, the role of
mental imagery, and the recovery of function following brain injury.
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1. Introduction

Common to all forms of sport and exercise is the need to coor-
dinate movements in a constantly changing environment. Despite
the apparent computational problems inherent in such complex
coordination [1], the human brain easily integrates information
across multiple sensory modalities and multiple muscles and joints
in order to generate a broad repertoire of adaptive behavior. Of
particular relevance to sports is the need to understand the behav-
ioral and neural mechanisms underlying performance and its
improvement, including the processes underlying recovery of func-
tion from sports injury and surgery. At the neural level, this entails
uncovering the cortical and subcortical circuitry responsible for the
formation and change of patterns of coordination. Coordination
Dynamics is a theoretical and empirical approach based on the con-
cepts, methods, and tools of informationally coupled self-organiz-
ing dynamical systems [2]. In the context of physical activities
and sport sciences, Coordination Dynamics offers a window into
uncovering neural processes of complex behavioral patterning
and performance as well as understanding how patterns can
change spontaneously in response to various forms of learning
and practice. Meaningful influences on the behavioral dynamics in-
clude such factors as intention, attention, and imagination [2].
Moreover, together with brain imaging techniques, Coordination
Dynamics provides a framework for uncovering how coordination
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may be altered as a result of mild and severe brain injury and for
establishing effective routes to retraining and recovery.

The goal of the present paper is to outline key methodological
issues for designing, analyzing, and interpreting neuroimaging
experiments undertaken within the Coordination Dynamics
framework. In Section 2, we present a brief overview of the
Coordination Dynamics approach, introducing key concepts and
tools, the basic experimental setting, and cardinal empirical find-
ings. In Section 3, we provide greater experimental detail, outlin-
ing basic methodological issues for designing and implementing
coordination experiments with specific focus on neuroimaging.
Section 4 will provide an overview and discussion of pivotal
neuroimaging findings for understanding the neural basis of
coordination and its application to the sport sciences. We will
conclude in Section 5 with a brief summary and some for-
ward-looking remarks.

2. Coordination Dynamics—approach and theory

Coordination Dynamics, defined broadly as the science of coor-
dination [see 2–5] describes, explains, and predicts how patterns of
coordination form, adapt, persist, and change in natural systems. It
uses the language, methods, and tools of self-organizing dynamical
systems [e.g. 6,7] to provide a conceptual and theoretical frame-
work for understanding coordination at multiple levels, from
behavior to brain [2,8,9]. A primary goal of Coordination Dynamics
is to understand the laws, principles, and mechanisms governing
how patterns of behavior form in space and time at multiple levels
of description (molecules, cells, circuits, brain, behavior, etc.); how
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Fig. 1. (A) Stylized depiction of a synchronized coordination pattern requiring
temporal coincidence between peak finger flexion (solid line) and the auditory
metronome (dotted line). (B) Syncopation requires the temporal placement of peak
flexion directly between consecutive metronome pulses. The relative phase (U)
between metronome and movement is the temporal difference (D) between the
signals divided by the inter beep interval (N). When expressed in degrees, ideal
synchronization and syncopation have a relative phase of 0 � and 180 �,
respectively.

326 K.J. Jantzen et al. / Methods 45 (2008) 325–335
these patterns are maintained; how they change in response to
environmental or physiological demands; and how they are (re)or-
ganized in an adaptive way, often allowing for the adoption of new
patterns.

Coordination Dynamics treats the problem of coordination be-
tween multiple effectors [10–13], between oneself and the envi-
ronment [14,15] and even between different people performing
movements while watching each other (e.g. [16–18], see [19] for
a review) as a dynamic, pattern forming process [2]. Coordination
is operationally defined by the spatiotemporal relationship be-
tween two or more coupled agents or components. Although in
the paradigmatic bimanual case the components are the fingers
or wrists of the two hands [2,10], components may be defined
quite broadly to include a range of environment stimuli—from sim-
ple computerized displays or sounds [14,20] to the actions (and
intentions) of another individual [16–18,21]. Such inherent flexi-
bility represents a major advantage of the Coordination Dynamics
approach, underscoring the applicability, and translation of simple
experimental paradigms to the study of complex human actions
across a broad range of contexts including athletics. Hence Coordi-
nation Dynamics has been employed to investigate and shed new
light in many physical activities or sports such as the relation be-
tween respiration and locomotion [22], juggling [23,24], gymnas-
tics [25], running [26], tennis [27], swimming [28], boxing [29]
skiing [30], golf [31], and even riding horses [32] to name only a
few.

Within the framework of Coordination Dynamics, coordination
is defined in terms of collective or coordination variables that spec-
ify the spatiotemporal ordering between component parts. In prin-
ciple, biological movement systems are high-dimensional,
involving a large number of elements that can be measured and
quantified in many different ways. Inspired by theories of self-
organization in physics and chemistry [6,7], a key result in Coordi-
nation Dynamics is that in the vicinity of critical points, emergent
behavior is governed by the low-dimensional dynamics of collec-
tive variables (e.g. [10,33]). This low-dimensional dynamics is re-
vealed by manipulating one or more non-specific control
parameters whose role is simply to move the system through a ser-
ies of state changes. Adopting this strategy in the case of human
behavioral coordination has identified relative phase between
component subsystems as a crucial collective or coordination vari-
able (or order parameter) and rate of coordination as a key control
parameter [10,33]. In short, the quantitative change of the control
parameter leads to qualitative changes of the order parameter.
Thus, when rate is systematically increased, instabilities in coordi-
nation develop, and spontaneous switches between patterns of
coordination ensue. It is these transitions and the features that sur-
round them that have established the self-organizing nature of hu-
man brain and behavior [34,35].

For the present discussion, the key aspect of the essentially
‘non-linear paradigm’ of Coordination Dynamics is that it provides
a convenient entry point for investigating the dynamics of pattern
formation and change at both behavioral and brain levels. System-
atic manipulation of the relevant control parameter, in this case
movement rate, provides experimental control over key features
of behavioral coordination and allows for direct investigation of
the neural mechanisms underlying pattern formation, change,
and improvement with learning and experience. Importantly, ac-
tions and the underlying brain dynamics can be quantified in terms
of coordination and stability of coordination in contrast (or as a
complement) to other commonly used performance measures such
as reaction time and response accuracy. Moreover, the relative
simplicity of the behavioral paradigm is easily implemented in
imaging environments without the need for expensive or compli-
cated recording devices and using only small flexion/extension
movements that minimize motion related artifacts. Under the pro-
posal that coordination patterns are generated and maintained
functionally independent of (or at least complementary to) the
component parts recruited during movement (e.g. motor equiva-
lence), the results from fMRI studies using simple finger coordina-
tion experiments may provide powerful insight into the neural
mechanisms of the sport related selection, development, and main-
tenance of complex patterns of action.

3. Concepts and issues in experimental design and analysis

The key to the Coordination Dynamics approach is in mapping
relevant coordination variables and control parameters onto brain
function to uncover neural circuits of pattern formation and
change. As such it is critical in designing experiments within this
framework to understand experimental factors that can alter the
behavioral pattern dynamics and associated neural dynamics. In
what follows we provide a general overview of the key experimen-
tal paradigm and factors to consider when investigating the neural
processes of coordination.

3.1. The sensorimotor coordination paradigm

Coordination entails coupling between two or more individual
components or agents that may themselves be of a variable nature.
For illustration, however, we will consider a well-studied case of
sensorimotor coordination [14], where temporal coupling is be-
tween a finger flexion/extension movement and a periodic stimu-
lus. In the majority of cases discussed in the following sections
the stimulus is an auditory signal, usually in the form of a short
beep, however, visual presentations have also been employed
[36]. The task requires participants to coordinate in one of two or
more possible patterns. Although a repertoire of patterns are pos-
sible, particularly with learning and practice [37–42] two patterns
tend to dominate (Fig. 1). Synchronization is defined by the tempo-
ral coincidence between peak finger flexion/extension and the
environmental stimulus, whereas syncopation requires each action
to be performed directly between consecutive beats. Very many
skills are of this type: from skipping where one must synchronize
one’s action with the periodicity of the rope, to dribbling a basket-
ball, to dancing, to stepping onto an escalator, and so forth. In biol-
ogy, numerous examples exist of external periodic stimuli
entraining biological ‘‘pacemakers”—cells possessing a spontane-
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ous rhythmic ability [14]. The Coordination Dynamics of these sim-
ple patterns has been revealed through systematic increases in
metronome frequency (our control parameter) typically starting
at 1 Hz and increasing to 3.5 Hz in steps of 0.25 Hz [14]. Instruc-
tions emphasize the importance of maintaining a 1:1 relationship
between finger movement and metronome at all times, and if the
pattern changes ‘‘not to intervene” or to intentionally restore the
pattern (see also [43,44]).

A rich and reproducible set of behaviors flows from this para-
digm as depicted in Fig. 2. At low metronome rates a strong ten-
dency exists toward frequency- and phase-locking in both
conditions. That is, both patterns are performed in a stable manner
with relative phase between finger and metronome close to 0 (syn-
chronization) or 180 (syncopation) degrees (see Section 3.2.2 for a
description of relative phase). As the rate of the movement is para-
metrically increased, a spontaneous transition from syncopation to
synchronization is observed at a critical frequency [14,45–47]
marking the change from a bistable regime (where both patterns
are possible and may be said to coexist) to a monostable one where
synchronization predominates. In some cases further increases in
rate induce a loss of entrainment between the finger and metro-
nome resulting in phase wandering and various patterns of phase
drift. Transitions between coordination patterns are typically pre-
ceded by an increase in the variability of the relative phase be-
tween sensory and motor events (Fig. 2B and C). Such fluctuation
enhancement in the vicinity of transition points, referred to as crit-
ical fluctuations, indicates a characteristic loss of stability typical of
non-equilibrium pattern forming systems in nature [6,48].

3.1.1. Translating paradigms to fMRI experiments
The advantage of Coordination Dynamics is that it allows for

examination of the neural mechanisms of single coordination pat-
terns or a set of patterns under controlled manipulation of stabil-
ity. In turn the paradigm affords a portal into how stability
changes with learning, experience, damage, and so on. The contin-
uous movement or ramping paradigm has been successfully em-
ployed in both EEG and MEG studies to investigate the
neurophysiological correlates of behavioral dynamics revealing
shared behavioral and brain dynamics [49–54]. However, the tight
temporal coupling between experimental conditions (rates) inher-
Fig. 2. Behavioral dynamics of non-linear phase transitions. In the paradigmatic sensor
pattern (top green bar) by timing finger flexion/extension movements (A, top trace) with
to 2.75 Hz with a 0.25 Hz increment every ten cycles. (B) Relative phase between the peak
measure of the coordination pattern which tends towards 180� (syncopation, green circles
plateau. The red vertical line indicates perfect synchronization and the green line indi
syncopation to synchronization as the rate is increased from 1.75 to 2.0 Hz. The yellow
characterized as an increase in phase variability. Adapted from [60].
ent in ramping designs are problematic in fMRI experiments due to
the poor temporal resolution of the instrument and the inherent
low pass filter properties of the hemodynamic response [55]. Coor-
dination and stability change too quickly under such conditions to
accurately map these behavioral measures on the BOLD response.
Hence, in order to investigate neural processes underlying coordi-
nated behaviors using fMRI, movements may be performed in dis-
crete blocks defined by a single coordination pattern and rate. A
canonical block design is then fashioned by simply alternating
coordination blocks with rest conditions. The foregoing approach
has the advantage of allowing for a direct comparison between
key coordination parameters such as rate, pattern type and stabil-
ity with BOLD amplitude (e.g. [56–58]; see also [59,60] for
reviews).

In contrast to conventional block paradigms, event-related de-
signs are required for the investigation of the neural mechanisms
of spontaneous and intentional pattern switching (see Section
4.3). Event-related designs allow for the post experiment definition
of key moments of interest such as the appearance of critical fluctu-
ations, loss of pattern stability, and the occurrence of switching be-
tween patterns [61]. The ability to classify events based on
quantitative evaluation is critical given the subject and experiment
dependent changes in coordination variables. Once identified, BOLD
signal changes in response to, or prediction of such coordination
events can then be evaluated using standard analyses [62]. More-
over, the long temporal interval between trials precludes efficiency
issues related to the temporal proximity between events [63].

3.1.2. Critical frequency and stability
The critical frequency (coordination rate at which one observes

spontaneous pattern switching) can be a useful dependent mea-
sure in studies of coordination and learning because it provides a
probe of the underlying dynamics of the system and offers a means
of quantifying experimental changes in those dynamics e.g. [64].
Due to its reliance on the underlying Coordination Dynamics, the
critical frequency will vary as a function of parameters that influ-
ence the dynamics and therefore must be determined individually
across participants and experimental contexts. For example, the
critical frequency is sensitive to musculoskeletal factors and may
vary substantially across participant and experimental setting
imotor coordination experiment participants start out performing the syncopated
an auditory metronome (A, bottom trace). Metronome frequency is increased from 1

finger flexion and metronome onset computed on each movement cycle provides a
) and 0 � (synchronization, red circles). (C) The distribution of relative phase across a

cates perfect syncopation. Panels (A–C) demonstrate a clear phase transition from
area preceding the phase transitions highlights the presence of critical fluctuations
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depending on the limbs being coordinated [65–67], whether coor-
dination involves flexion or extension [53,68], the relative position
or spatial configuration of limbs being coordinated [69,70], differ-
ent planes of motion [71], and the specific muscles being used [72].
Moreover, coordination stability and the critical frequency can be
modified by the modality over which information is presented,
the perceptual mapping of the responses [73] or the intention of
the participant to either maintaining the pattern [74,75] or switch-
ing to a different pattern [43,44,76]. Pattern stability and the crit-
ical frequency can also be more permanently altered through
experience and learning [38–40,42,69,77–79]. All these facts, taken
together, underscore the potential importance of determining indi-
vidual critical frequencies for specific paradigms and individual
participants [38,44].

3.1.3. Appropriate frequency ranges
Selection of an appropriate experimental frequency range may

be particularly important in cases where one is interested in the
neural mechanisms of stability in relation to patterns of coordina-
tion, learning, practice and disease. In particular, the slowest rates
should not slip below the range typically considered rhythmic [47]
and at which prediction of upcoming stimuli is possible [45]. Rates
of coordination below approximately 0.75–1.0 Hz are more likely
to tap into neural mechanisms related to response selection and
reaction rather than coordination and stability [45]. At high fre-
quencies coordination may enter an unstable regime characterized
by a range of possible behavioral outcomes including pattern
switching, phase wrapping or phase wandering and the adoption
of uninstructed temporal relationships such as 2:1 patterns [80].
Such unpredictability may confound the mapping between neural
activity and performance features and thus, unless one is specifi-
cally interested in the neural correlates of this regime it is advan-
tageous to maintain coordination at rates below approximately
4 Hz. Since the tasks are intended to probe stability and informa-
tion processing demands, fatigue should also be minimized.

Behavioral studies have focused on the transition between bi-
and monostable regimes as indicated by switches from syncopa-
tion to synchronization at a critical frequency. However, because
the occurrence of spontaneous pattern switching introduces a po-
tential confound in fMRI studies, coordination has often been
maintained below the critical frequency. General guidelines sug-
gest that syncopation becomes unstable at approximately 2 Hz in
auditory motor coordination and a number of studies have re-
spected this threshold [58,59]. But, in keeping with the overall
message of this section, it is critical to be mindful of the fact that
there are a large number of experimental factors that can alter
the stability of coordination. Growing evidence supports the role
for a coalition of constraints in guiding coordination and modulat-
ing pattern stability across a range of experimental contexts
[21,67,71,73,81,82]. Such constraints may work both at the level
of perceptual or environmental input [83], and at the level of the
movement, for instance in the form of haptic feedback [68,81].

3.2. Analysis of coordination data

3.2.1. Collecting kinematic data
Special consideration must be given to devices for recording

kinematics during coordination tasks in magnetically sensitive
environments (e.g. fMRI, MEG). Several options are available each
with unique advantages and disadvantages. The number of com-
mercial and custom devices available for use in fMRI and MEG
are too numerous to fully consider here. Instead we will describe
commonly used options with focus on devices with which we have
some experience.

It is likely that the most easily accessible device for recording
the result of simple finger flexions is a button box that provides
a single digital pulse each time a key or button on a non-magnetic
response pad is depressed. The button press may be taken as a
measure of peak flexion and therefore be used to compute a point
estimate of relative phase (see Section 3.2.2). Under such assump-
tions, computation of relative coordination requires information
concerning the timing of the key press and the time of the corre-
sponding external stimulus (or additional component being coor-
dinated). Button boxes have the disadvantage that they do not
provide a measure of the kinematics, only a measure of the point
of contact with an external surface. Lack of full kinematics pre-
cludes inquiry based on position and velocity which both theory
[84] and data [53] suggest is highly relevant. Moreover, haptic
feedback provided by tapping the response pad can alter the
dynamics of coordination, affecting stability, and switching time
as well as the relative stability between patterns [68,81].

Examples of elaborate alternative devices designed by individ-
ual labs measure angular displacement by means of shaft encoders
[85] or measure finger position by means of fiber optics [86]. In
principle, such devices are perfectly acceptable and have the
advantage of providing a continuous, time dependent signal of
the entire movement cycle (i.e. kinematics). One caveat is that such
devices are often relatively large and are either fixed in position or
worn by the participant in some way thereby limiting their appli-
cation to a relatively small range and orientation of motion. Care
must also be taken to ensure that such devices do not interfere
with the movement they are meant to measure by providing addi-
tional sources of information through haptic or other feedback or
by restricting the degree of movement (e.g. unintentionally
restricting degrees of freedom). Moreover, the cost of developing,
building (or purchasing) and maintaining elaborate non-magnetic
devices may be prohibitive for some labs.

A simple and low cost alternative that we have adopted is to
quantify finger position as pressure changes in a small, non-mag-
netic air pillow (e.g. [53,56,87]). Air filled blood pressure bladders
are connected to a transducer via several meters of plastic tubing.
Movement induced changes in pressure in the bladder are con-
verted to an analogue signal by a pressure transducer located out-
side of the MRI or MEG suite. The resulting signal, depicted in
Fig. 3, is then digitized (together with the relevant stimulus and
time locking signals from the magnet) and stored on disk. The de-
vice has no moving parts and, because the cuffs are plastic, it is
completely non-magnetic. Moreover, the pillows are light, small,
and flexible and therefore do not interfere with the movement
while allowing for a range of postures and applications.

3.2.2. Computing coordination variables
Earlier we introduced the relative phase between interacting

components as a key order parameter [10,33] or coordination var-
iable [2] that characterizes the system’s collective behavior. Rela-
tive phase qualifies because under parametric manipulation of a
non-specific control parameter such as rate, measures of relative
phase stability (variability, relaxation times following small per-
turbations, switching times, etc.) index behavioral pattern forma-
tion and anticipate spontaneous switching between patterns
[2,8,34,35,88]. For example, in the bimanual case, the relative
phase represents both the position and velocity of the end effector
thereby capturing four degrees of freedom in a single quantity. A
point estimate of the relative phase (U) is calculated according to
the following:

U ¼ D=T 2p ð1Þ

where D is the time difference between maximum flexion of the
moving finger (limb) and the preceding stimulus (see Fig. 1B) and
N is the time distance between the onset of successive stimuli. As
discussed previously and illustrated in Fig. 1, perfect coordination
results in U = 0� for synchronization and U = 180� for syncopation.



Fig. 3. Illustration of a finger flexion/extension movement recorded as pressure changes in a small air filled bladder. The trace shows several seconds of a movement
performed at approximately 2 Hz. An upward deflection in the trace indicates index finger flexion. The movement signal was recorded at 500 Hz and low passed filtered
below 5 Hz. The non-magnetic bladder offers a convenient and cost effective means of recording movement kinematics from inside the MR scanner.
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A similar calculation has been used to compute the relative phase
between components across a number of contexts including biman-
ual skill learning [38], coordination between wrist displacement
and grip aperture [89], coordination to an external event
[14,20,68], inter- and intra-limb coordination [10,12,26,40,71,90]
as well as interpersonal coordination e.g. [16,17,21,91–95]. This
simple formula thus provides a useful metric for investigating the
spatiotemporal relationship between coordinated structures across
a range of contexts and tasks.

The average coordination performance is represented simply as
the circular mean relative phase for a given pattern across a block
of trials at constant frequency. Stability of the coordination pattern
is represented by the variability in performance over the block as
given by the circular deviation of the relative phase. Because of
the circular nature of the phase measure U, mean (MU), and stan-
dard deviation (SDU) must be computed using circular statistics
[96–98] as follows:

M/ ¼ a tanðX;YÞ ð2Þ

SD/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 þ Y2ÞÞ

qr
ð3Þ

where

X ¼ 1
n

Xn

j¼1

sin /j

 !
and Y ¼ 1

n

Xn

j¼1

cos/j

 !

It is worth noting that relative phase can also be computed in a con-
tinuous fashion ([48]; see also [39] for a comparison of continuous
and point estimate methods on the same dataset). For example,
quantitative evaluation of relative coordination can also be investi-
gated in the frequency domain, provided by the FFT Power Spec-
trum Overlap (PSO) between the movements of limbs [99]. PSO
measures the percentage of movement frequencies common to both
partners in a pair. Defined as the area of intersection between each
participant’s normalized spectral plots, the PSO is an indicator of
the strength of the frequency entrainment between elements to
be coordinated including between two individuals [17,99].

3.3. Analysis of neuroimaging data

In most cases, analysis of fMRI data can be performed using ac-
cepted linear models [100] and standard software packages. Intro-
duction to fMRI analysis is also available in a number of recent
texts which are highly accessible [55,101,102]. Hence the topic will
not be considered further here. Instead, attention will be given to a
specific parametric mapping approach adopted for detection of
predicted relationships between BOLD intensity and behavioral
stability. The approach, introduced by Büchel and colleagues
[103], uses a general linear model to reveal the (non)-linear rela-
tionship between stimulus or behavioral parameters and BOLD
activity. In coordination experiments such an approach allows for
the detection of brain areas that: (1) show a linear relationship be-
tween stimulus rate and BOLD intensity; and (2) show an interac-
tion indicating brain areas where BOLD intensity increases with
decreasing stability. The latter is critical for identifying brain cir-
cuits underlying pattern formation, persistence, and change.

Key elements of the analysis are illustrated in Fig. 4 showing
data from a simulated block design coordination experiment
requiring synchronization and syncopation at one of three demon-
stration rates (1.0, 1.5, and 2.0 Hz). The presentation of the exper-
imental conditions together with two resultant time series is
shown in Fig. 4A. The upper trace is from a voxel in which BOLD
amplitude increases with increasing rate for both coordination pat-
terns; that is, this voxel is rate dependent. The voxel depicted in
the lower trace is sensitive to pattern stability because BOLD
amplitude increases during syncopation, as stability decreases,
but not during the synchronization pattern when stability is unaf-
fected by rate. The relationship of the two time series to the exper-
imental and theoretical parameters is shown in Fig. 4B and D.
Parameter estimates are derived by a linear fitting of the covari-
ates, shown in the design matrix at left (B), to each time series. Fit-
ting the model to the rate dependent time series gives the
parameter estimates plotted in Fig. 4C. The relationship between
BOLD and rate is revealed by the systematic increase in the param-
eter estimate as rate increases for both synchronization (black
bars) and syncopation (white bars). Fitting the same model to
the stability-dependent time series yields parameter estimates
(Fig. 4D) that mirror observed patterns of behavioral stability
[14,59,60]. The patterns of BOLD activity depicted in Fig. 4C and
D have been observed recently in the literature and taken as evi-
dence that primary sensory and motor areas are sensitive to rate
changes, whereas BOLD amplitude in premotor areas and cerebel-
lum are sensitive to pattern stability [58,59].

Identifying specific brain areas that demonstrate the theoreti-
cally predicted relationship between rate and stability can be
achieved by modeling BOLD activity directly as a function of rate
(Fig. 4E–G). To create the covariates of interest one multiplies a
time series modeling the presence or absence of movements on
each block by the corresponding rate of coordination for that block.
Applying this approach separately to synchronization (dotted line)
and syncopation (solid line) conditions yields the two covariates
plotted in Fig. 4F. Each covariate models a rate by movement



Fig. 4. A sample linear analysis illustrating approaches for determining the relationship between coordination parameters and BOLD amplitude is shown. The two virtual
time series in (A) exemplify that BOLD amplitude in different brain regions may vary as a function of movement rate ((A) upper trace) or as a function of pattern stability ((A)
lower trace). Each task block (gray region) is defined by a coordination pattern (synchronize or syncopate) performed at a specific rate (1.0, 1.5 or 2.0 Hz). Fitting the data with
a design matrix in which each experimental condition is modeled as a single covariate (B) yields a set of parameter estimates that qualitatively identify both rate (C) and
stability (D) dependent activity. In (C), BOLD amplitude increases with increasing rate for both coordination patterns. In (D), BOLD activity follows pattern stability, which
decreases during syncopation and not synchronization. Quantitative assessment of the predicted relationships can be assessed by modeling the BOLD response as a function
of rate for each coordination pattern (E and F). The design matrix in (E) includes baseline covariates (left two columns) to account for main effects of movement for each
pattern and covariates to model the movement by rate interaction (right two columns). A movement by rate interaction was modeled separately for each coordination pattern
by multiplying the modeled hemodynamic response on each block by the corresponding coordination rate (F). Shown in (G) are parameter estimates that indicate both rate
dependence (G, left) and stability dependence (G, right). See text for more detail.
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interaction, the presence of which is indicated in our example by
the amplitude of the associated parameter estimate. The resulting
design matrix, including requisite baseline models to account for
the main effect of movement [103], is shown in Fig. 4E and the
parameter estimates obtained from fitting this model to the simu-
lated data are given in Fig. 4G. The parameter estimates for the fit
to the first voxel reveal the expected rate �movement interaction
for both synchronization and syncopation (left two bars in Fig. 4G).
The parameter estimates for the fit to the second, stability-depen-
dent voxel accurately reveal that BOLD increases with rate occur
only during syncopation and not synchronization indicating a spe-
cific rate �movement � pattern interaction (cf. Fig. 4D). When ap-
plied to Coordination Dynamics paradigms, the approach outlined
here and provided in detail elsewhere [103] provides a means to
describe theoretically predicted patterns of BOLD activity across
a large number of conditions using only one or two parameter esti-
mates and the contrast between them.

4. Key neuroimaging findings with relevance to sports

4.1. Stability-dependent cortical circuitry

Recent studies investigating the relationship between large-
scale measures of brain function and coordination using PET,
TMS [58], and fMRI [59,85] have uncovered the neural circuitry
associated with the stability of temporally evolving patterns of
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coordination. Meyer-Lindenberg and colleagues [58] measured
cerebral blood flow from participants performing in-phase and
anti-phase bimanual movements at four movement rates (1.0
1.5, 1.7, and 2.0 Hz) below the critical frequency. In a similar and
complementary investigation, Jantzen and Kelso [59] investigated
the mapping between BOLD amplitude, movement frequency and
stability of unimanual sensorimotor coordination patterns. In this
latter example, participants coordinated right hand finger flexion
with an auditory metronome in either a synchronized or synco-
pated pattern at five different movement rates (0.75, 1.0, 1.25,
1.50, and 1.75 Hz), all below the critical frequency at which spon-
taneous transitions from syncopation to synchronization are
known to occur.

Taken together, results of these two studies provide neuro-
physiological evidence for the existence of two separate but inter-
acting brain networks underlying basic patterns of coordination. In
both experiments moving at increasingly higher rates resulted in a
significant reduction in stability only for anti-phase (syncopated)
movements, a finding compatible with well-known studies of coor-
dination and theoretical predictions thereof. Measures of neural
function revealed greater activity concomitant with increasing
instability in bilateral dorsal premotor cortex, SMA, and cingulate
as well as the left frontal operculum (insula), and ipsilateral cere-
bellum (see example in Fig. 4A). In contrast, activity in contralat-
eral sensorimotor cortex and primary auditory cortex
demonstrated a linear increase in activity for both patterns, a find-
ing consistent with a modality dependent processing role associ-
ated primarily with the elementary sensory and motor demands
of the task [59].

The parametric approach of the Coordination Dynamics para-
digm thus allows for the differentiation between brain networks
related to (a) dynamic features of coordination that represent the
global organization of the behavioral pattern, in particular its sta-
bility properties and (b) those related to more elementary modality
dependent sensory and motor features. Overall the foregoing re-
sults demonstrate how activity across a network that minimally in-
cludes SMA, lateral premotor cortex, and cerebellum is linked to
the degree of behavioral stability. Moreover, TMS studies have
demonstrated that depending on how close the brain is to an insta-
bility, disruption of this network may result in the destabilization,
and eventual dismantling of a less stable pattern in favor of a more
stable one [58,104,105].

4.2. Switching and selection between patterns of coordination

Behavioral coordination requires complementary neural mech-
anisms to both maintain complex behavioral patterns as they be-
come unstable and to intentionally switch between patterns in
order to meet changing demands. Efficient selection and switching
between behavioral patterns are of critical importance in athletics
where performance depends on rapid transitions in response to the
demands of play such as the actions of an opponent and so forth.
Switching between patterns of coordination may occur spontane-
ously as stability of one pattern gives way to another as experi-
mental or task related demands vary [2]. The spontaneous
transition from running to walking is one such example [26]. Much
less investigated, however, are interactions between the purpose-
ful intention to adopt a specific coordination pattern or switch be-
tween patterns and the underlying intrinsic dynamics. The term
‘‘intrinsic dynamics” expresses the fact that the system (which
may include the brain)—prior to any specific input—already pos-
sesses a repertoire of behavioral patterns that are unique to each
individual [2,10].

Behaviorally, intention acts to parameterize the intrinsic
dynamics by destabilizing an ongoing pattern and stabilizing a tar-
get pattern [43,44,74,75]. In addition, intention may act as a ‘forc-
ing’ on the dynamics that stabilizes an intrinsically unstable
pattern that under the current circumstances, e.g. high movement
rate, is prone to switch ([2], Chapter 5). Measurement of switching
time reveals that intention both acts upon and is constrained by
the intrinsic dynamics of coordination [43,44]. Initial work investi-
gating neural changes associated with spontaneous transitions be-
tween bimanual coordination patterns adopted an event-related
approach in which events in the fMRI signal are defined by the
occurrence of transitions in the behavioral response [61]. This ap-
proach revealed that switching between patterns was associated
with activity in prefrontal, premotor, and parietal regions [61].
The general network reported by Aramaki and colleagues is com-
patible with the stability-dependent circuits described here and
elsewhere [59]. The increased activity reported in specific brain re-
gions may reflect the loss of pattern stability that precedes sponta-
neous pattern switching.

Preliminary event-related fMRI work is underway using a
bimanual coordination paradigm to explore the neural basis of
the interaction between pattern stability and intentional switching
(Fig. 5). BOLD activity was recorded while participants coordinated
flexion/extension movements between left and right index fingers
in either an in-phase or anti-phase pattern at three different pacing
frequencies (1.52, 2.0, and 2.5 Hz). In keeping with our general
experimental approach, increasing coordination rate destabilized
the anti-phase but not the in-phase pattern, thereby providing
experimental control of the relative stability of the pre and post
switch patterns. On each trial participants received an auditory sig-
nal to switch between patterns. Switches were either from anti-
phase (less stable) to in-phase (more stable) or vice versa. In agree-
ment with existing behavioral findings and dynamical theory
[43,44], switching time was shorter when moving from the less
(anti-phase) to the more stable (in-phase) pattern and decreased
in duration with rate dependent decreases in pattern stability
[88]. During switching, BOLD activity in Basal Ganglia (BG), pre-
SMA, precentral gyrus and prefrontal cortex, was inversely related
to the stability of the initial pattern (Fig. 5B and C). That is, BOLD
activity was greater when switching from a more stable to a less
stable pattern. Stability-dependent activity in BG was present only
during the switch, implicating this region in the intentional pro-
cess of switching among patterns. Support for this hypothesis
comes from previous findings that BG plays a role in the selection
of desired actions and in the inhibition of competing ones [106].
Importantly, the pattern of BG activity suggests that the selec-
tion/inhibition process is modulated by the relative stability of
the behavioral patterns such that BG may act to parameterize the
intrinsic Coordination Dynamics.

4.3. Learning and practice-related changes in coordination and brain
activity

A key issue for the application of neuroimaging in sports and
exercise is to understand how different forms of practice and train-
ing can improve performance and how such enhancement is man-
ifested at the neural level. The dynamic systems approach to skill
learning aims at identifying key principles of adaptive change that
apply to an entire coordination landscape, not just a single behav-
ior [38]. A major tenant of the Coordination Dynamics approach to
learning is that the to-be-learned pattern emerges as a modifica-
tion of existing intrinsic dynamics. That is, the route to learning
will depend on the degree of competition or compatibility between
the new pattern and preexisting coordination preferences and ten-
dencies [40]. Thus, two key features of learning demonstrated
experimentally using simple coordination paradigms are that (1)
learning progress and strategy depend on the relationship between
to-be-learned patterns and existing coordination tendencies and
(2) learning a new pattern can alter the entire coordination



Fig. 5. A bimanual coordination paradigm was used to explore the neural basis of the interaction between pattern stability and intentional switching. BOLD activity was
recorded while participants coordinated movements between left and right index fingers in either an in-phase or anti-phase pattern at three different pacing frequencies
(1.52, 2.0, and 2.5 Hz). On each trial, participants were signaled to intentionally switch between patterns. Switches were either from anti-phase (less stable) to in-phase (more
stable) or vice versa. Areas demonstrating a pre-switch relationship between BOLD activity and pattern stability are colored in (A). In both the rostral supplementary motor
area (pre-SMA) and lateral premotor cortex (lPMC) BOLD amplitude increased linearly with decreasing pattern stability. The relationship between BOLD amplitude and
stability during intentional switching is shown in (B and C). During intentional switching, BOLD amplitude in both the pre-SMA (B) and bilateral putamen (C) (shown in blue)
was greater when switching from a stable compared to unstable pattern. This relationship is observed in the line graphs (C) plotting the BOLD amplitude in Basal ganglia for
each condition (plots in C). Pre-switch BOLD activity is shown in blue and switching activity in red. The stability of the preceding pattern (indexed as the inverse of the
circular deviation of the relative phase) is shown in gray. Results provide a clear demonstration of how the role of the basal ganglia in pattern selection and switching (red) is
parameterized by the stability of the preceding pattern.
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repertoire by reshaping the landscape of the dynamics [38,39,42].
Therefore, when considering learning within the Coordination
Dynamics framework, it is critical to account for individual differ-
ences in initial ability and to consider how the learning of a new
pattern may interact with other existing coordination patterns.

The basic paradigm uses a scanning technique to establish the
intrinsic dynamics of each participant (e.g. [38–40,64,79]) prior
to learning of a new behavioral pattern. During and following
learning the full repertoire of coordinative patterns can be probed
to quantify both progress in learning and how practice modifies
the entire dynamical landscape [40,79]. Using approaches outlined
by the present framework, researchers have investigated behav-
ioral and neural mechanisms of learning [38,39], transfer [40],
and the interplay between learning and attention [79]. The latter
may be of particular importance in sports because it provides a
means to quantify the process of automatization of well-learned
behaviors that is an oft-stated goal in athletics.

A growing number of studies have begun to investigate the neu-
ral consequences of coordination practice and performance
improvement. One MEG investigation reported neural changes
associated with training the intrinsically unstable syncopation pat-
tern by having participants practice at their individual critical fre-
quency [64]. Practice with feedback resulted in improved
performance as indicated by a shift to a higher critical frequency
in all subjects. Pre-training differences in neural oscillatory activity
between synchronization and syncopation were reduced following
learning such that similar neural dynamics was associated with
both patterns. Moreover, although training was restricted to the
critical frequency, learning related changes in neural activity were
observed at all movement rates below the critical frequency attest-
ing to the generalizability of learning. Complementary behavioral
findings suggest a similar outcome for transfer across effectors
[40], but appropriate imaging experiments have not yet appeared.

Learning to perform a novel coordination pattern such as a 90�
relation between wrist flexion movements results in performance
related activity decreases across several premotor cortex regions
[41]. Similar decreases in secondary motor areas have been re-
ported in piano players relative to controls during a motor sequence
learning task [107]. Areas demonstrating learning dependent activ-
ity decreases included lateral premotor cortex and the SMA, both of
which are sensitive to coordination stability [59]. By extension,
such findings suggest that coordination learning acts across stabil-
ity-dependent cortical circuits to stabilize patterns of behavior. The
complex interplay between context, practice and coordination is
further demonstrated in an fMRI study of syncopation practice
[57]. Participants who simply practiced a syncopated pattern in
the absence of explicit error feedback showed a decrease in the syn-
copation related BOLD response in superior temporal gyrus and cer-
ebellum. A paradoxical increase in BOLD activity was found during
post practice synchronization in SMA, inferior frontal gyrus and
superior temporal gyrus. Despite lack of changes in behavioral per-
formance, such results hint at how learning can alter the neural
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activity related to a larger repertoire of coordinated behaviors than
the one explicitly practiced or learned.

Potential follow up questions in the area of learning are (1) how
large-scale cortical function reflects increased stability achieved
through practice and (2) how changes in neural activity reflect
the cooperative and competitive mechanisms that underlie the
relationship between the patterns being learning and preexisting
intrinsic dynamics. Learning studies within the Coordination
Dynamics framework could ultimately aid in establishing individ-
ualized training approaches that maximize performance increases
by selecting optimal routes to learning that may include action
observation and imagination. For instance, Calvo-Merino and col-
leagues analyzed brain activity of experts in classical ballet, ex-
perts in capoeira, and non-dancers who viewed videos of ballet
or capoeira actions [108]. A strong influence of motor expertise
on action observation was found when comparing the brain activ-
ity of dancers watching their own dance style compared to another
style. Such results underscore the sometimes underappreciated
intimacy between perception and performance, particularly as it
relates to athletics.

4.4. Imagery and coordination

Motor imagery, or the mental practicing of motor actions in the
absence of overt performance [109,110] is another strategy for
learning new patterns of coordination. The neural processes under-
lying imagination of a given motor task are generally similar to the
ones required to physically execute it [111–113]. For instance, dur-
ing motor imagery the processing of relevant stimulus parameters
and the constraints that they impose, including timing, are similar
to that observed during execution [110,113–118]. By decoupling
the sensory aspects of the coordination task from motoric con-
straints the processing demands at two levels (sensory input and
sensory motor integration) can be investigated while a third (motor
execution) is removed. Thus the relative contribution of certain
brain areas to some of these levels can be identified. In a motor
imagery version of the classic sensorimotor coordination paradigm
Oullier and colleagues [87] compared brain activity of two coordi-
nation patterns (synchronization and syncopation) to their covert
equivalent. It was also possible for the first time to compare the
neural underpinnings of the two imagined tasks. Results revealed
that the typical differences found when comparing brain activity
underlying executed synchronization and syncopation [56,57,119]
persisted for the imagined coordination patterns [87]. Such results
suggest that the neural indices (demands on timing and motor
preparation) of tasks of inherently different stability persist in the
absence of movement [87]. The foregoing findings also extend re-
cent ones that have revealed context-independent neural signa-
tures of behavioral instability after contrasting brain activity
when performing various unstable compared to stable rhythmic
coordination patterns (uni-, bimanual, and interlimb coordination;
[59,60]). All the foregoing findings support the notion of stability-
dependent neural circuitry, i.e. brain regions that are specifically
sensitive to pattern stability independent of the components being
coordinated and the physical execution of movement.

Motor imagery (or mental practice) is widely used in the con-
text of rehabilitation and sports training. Future research may fo-
cus on how imagery of coordination patterns can stabilize
previously unstable patterns and whether similar generalization
and broad modulation of cerebral patterns is capable of inducing
significant changes in overt performance. As mentioned earlier,
the fact that similar constraints, especially movement sequence
and timing, persist at a neural level in the absence of movement,
makes motor imagery an interesting training tool that may en-
hance motor preparation and planning. In a study of golf imagery,
Ross and colleagues [120] found that brain activation decreased
with increased golf skill level, particularly in supplementary motor
area (SMA), and cerebellum. A recent study suggests that, in addi-
tion to its major role in motor preparation the SMA also plays a
part in suppressing movements that are possible but not per-
formed [121]. Such is often the case in motor imagery. More and
more evidence points to a minimal activation of M1 in imagined
compared to executed coordination [87]. However, in the context
of imagined locomotion, recent findings suggest that training is
associated with an expansion of active bilateral motor areas
[122]. This finding, together with a reduction of visuospatial acti-
vation in right occipital regions, suggests a decreased role for visual
imagery in the post-training period in favor of a motor-kinesthetic
one [122]. Such evidence is complemented by the research of Four-
kas and colleagues [123] who used TMS to show that muscles of
expert tennis players exhibit enhanced corticospinal excitability
during motor imagery of tennis but not golf or table tennis. Inter-
estingly, no such modulation was found across sports for a group of
non-expert tennis players who nevertheless practiced sports on a
regular basis. Expertise appears to play an important role in mod-
ulating sensorimotor representations during mental practice of a
given sport [123]: The higher the level of expertise, the more effi-
cient the mental practice.

4.5. Sport related brain injury, rehabilitation, and retraining

According to Coordination Dynamics, maladaptive patterns of
behavior can interfere with the learning of new, more adaptive
behaviors. Such maladaptive patterns may emerge from the forma-
tion of bad habits or develop in conjunction with compensatory or
adaptive strategies for overcoming injuries. Embodied therapeutic
approaches such as the Feldenkrias method [124] believe that di-
rected attention to existing behavioral patterns can improve the
ability to adopt new and more adaptive behaviors. That is, empha-
sis is placed on sensitivity to the coordination structure as opposed
to the behavioral goals [124]. This approach has been used to
achieve improved behavioral function in a patient 9 months after
suffering a left middle cerebral artery stroke; a time after which
traditional approaches provided no further improvement [112].
Simple unimanual and bimanual coordination paradigms—both ac-
tual and imagined—were used to reveal concomitant large-scale
reorganization of cortical activity. Three scanning sessions per-
formed over a 3-month period revealed an increase in activity of
affected M1 and a simultaneous decrease in activation of premotor
(SMA and PMC) and parietal regions. Such reorganization is indic-
ative of the formation of flexible, stable coordination patterns
[57,59] and demonstrates how Coordination Dynamics compatible
learning and retraining paradigms may induce neural plasticity in
support of behavioral rehabilitation. The occurrence of cortical
plasticity is emphasized by the observation that similar adaptive
changes in neural activity are observed even when the patient only
imagines coordinating [112].

Sport related mild brain injury, or concussion, is of serious con-
cern in athletics, and has attracted recent interest across a range of
sports including football, soccer, baseball, hockey, and others. A
critical goal in concussion research is the development of ap-
proaches to adequately quantify and assess the neural conse-
quences of concussion and the progress of recovery. Neural
indices of cognitive and motor dysfunction associated with concus-
sion may eventually provide empirical data on which to base re-
turn to play decisions. Because functional magnetic resonance
imaging (fMRI) provides task specific information about neural
function, it is well suited to detect functional abnormalities associ-
ated with concussion and can be tailored to address the specific
and most prevalent complaints of patients. In addition, BOLD mea-
sures are sensitive to deficits that may be related to dynamic as-
pects of neural function that are evident only under conditions of
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cognitive load or information processing [125,126]. Functional MRI
has an added advantage over other brain imaging techniques such
as PET and SPECT since multiple sessions can be performed on a
single subject within very short periods of time. This promotes
the implementation of prospective neurophysiological investiga-
tions in which pre-injury baseline measures of neural function
are obtained for each participant in anticipation of future deleteri-
ous events such as brain injury. Prospective approaches to the
study of concussion have proven to be an essential approach in re-
cent neuropsychological investigations [127–129] but have yet to
be applied in neurophysiological settings. On the other hand, a pro-
spective approach to brain injury receives great impetus from re-
search on the Coordination Dynamics of learning ([2],Chapter 6,
Section 4.4). That work demonstrated that each individual enters
a new learning situation with his or her own predispositions and
preferences (‘‘intrinsic dynamics”) and that the relationship be-
tween new information (e.g. a task to be learned) and intrinsic fac-
tors determines the nature and rate of learning. Every brain shares
similarities, but each brain is different. Grouping individuals to-
gether without attention to such ‘baseline differences’ hides the
basic dynamics of the learning process, and by extension, how an
individual brain recovers following injury.

The detection of between-session differences within a single
subject is novel in functional neuroimaging and may prove a pow-
erful advance in the assessment and monitoring of concussion for
four primary reasons. First, a within subject approach allows each
player to act as their own control thereby removing (or at least
complementing) the need for large normative databases. Second,
it may prove more sensitive to pathological changes within an
individual that may be small relative to the typically large between
subject variability observed when combining physiological data
from larger subpopulations [130–132]. Such concussion related
changes in neural activity, while apparent within an individual,
would therefore go undetected when compared to so-called nor-
mal subjects. Third, in agreement with our overall individualized
approach, no assumption is made about what constitutes a normal
pattern of neural activity and whether a single subject’s individual
brain responses deviate from normal. The pattern of neural activity
for each individual is likely to reflect personal history and intrinsic
capacity. Neural consequences of concussion will interact with this
baseline state and thereby should be assessed within an individual.
Finally, the pattern of recovery of function is likely to be highly
individualized and as such is only adequately quantified with re-
spect to each individual and their own preexisting pattern of neu-
ral activity.

Initial research adopting a within participant approach has been
successful in identifying specific, within subject, neural signatures
of mild head injury in athletes within one week following impact
[133]. Both concussed athletes and control players performed a
sensorimotor coordination paradigm similar to that employed for
the investigation of stroke recovery [112]. Compared to their
own baseline control data, concussed players showed significant
alterations in functional activity across specific cortical regions
including premotor and parietal cortices. Sensitivity of a within
participant approach may be enhanced by adopting parametric
coordination paradigms as discussed here and parametric cogni-
tive paradigms to assess dysfunction in memory. Recent unpub-
lished work from our lab demonstrates that such paradigms
provide a dramatic decrease in variability across session, thereby
increasing sensitivity to neural changes associated with brain in-
jury and recovery of function.

5. Conclusions and future directions

Throughout this review we have tried to pinpoint exciting re-
search possibilities for elaborating the role of neuroimaging in
sports, ranging from understanding the neural mechanisms of skill
learning to recovery of function following brain injury. From the
perspective of brain Coordination Dynamics, it is now recognized
that complex cognition and action arise from cortical interaction
between discrete and specialized neural regions. The dual ten-
dency between long-range integration across multiple cortical
sites and the neural segregation implied by local specialization of
basic cognitive functions provides new challenges to understand-
ing the brain. The theory of Coordination Dynamics has proposed
metastability as a new principle of behavioral and brain function
[2,134–136]. Metastable coordination, which expresses the joint
tendency for the diverse regions of the brain to function autono-
mously at the same time as to coordinate together, allows for flex-
ible switching in the brain on a time scale compatible with action
and cognition. Although the neural pattern generating circuits
associated with patterns of coordination and their involvement
in attention, intention, learning, and recovery from brain damage
are the subject of much investigation, the rich dynamics of the
neural architecture is just beginning to be explored. Uncovering
the Coordination Dynamics of brain and behavior on the same time
scale requires true multidisciplinary approaches and the integra-
tion of multiple imaging modalities—in addition to theoretical
modeling studies at both brain and behavioral levels.
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